Андрeeв e и основы eстeствeнной энeргeтики спб 2004 583 с 8

— газ воды — отдельные молекулы при сверхкритических параметрах;   — водяной пар — отдельные агреты, состоящие из трех молекул воды;   — жидкое состояние воды — монокристаллы воды, каждый из которых состоит из 3761 молекулы воды H2O.

 

Другой пример — наступление сверхпроводимости, например, в алюминии, описанное выше.

 

При температуре сверхпроводимости атомы в кубической решетке объединяются по 7 штук общим вихрем электрино. За счет этого слияния атомов в группы скачком открываются большие каналы между этими агрегатами атомов с общими большими вихрями электрино. Увеличенные вихри выходят на поверхность проводника, образуя ток сверхпроводимости и объединяясь в устойчивые образования типа ячеек Бенара, что и замечено в опытах как выход магнитного поля на поверхность и наличие ячеек его циркуляции.   Третьим примером будет образование (синтез) химических элементов вещества из элементарных частиц и обратный процесс — распад вещества на элементарные частицы — фазовый переход высшего рода (ФПВР).

 

Вещество имеет следующие фазовые состояния или этапы образования:   — мононейтроны — неустойчивые кластеры, состоящие из одного электрона и соответствующего по заряду количества электрино.

 

Мононейтроны образуются и распадаются, составляют большинство в космическом пространстве;   — димононейтроны — образования, состоящие из двух электронов и соответствующего количества электрино;   — нейтрон — единичный атом, который состоит из трех электронов и соответствующего количества 2,4181989·108 электрино. Разбалансированный по заряду нейтрон является атомом водорода — протия;   — атомы всех химических элементов, в том числе, — устойчивые изотопы, включенные в таблицу Менделеева, состоят из единичных атомов (нейтронов).   Неустойчивые изотопы бывают двух сортов:   — имеющие недостаточное число нейтронов, — эти изотопы растут до устойчивых;   — имеющие избыточное число нейтронов, — эти изотопы являются радиоактивными, распадаются опять-таки до устойчивых, точнее: до устойчивого состояния.   Распад вещества на элементарные частицы сопровождается выделением энергии их связи. Синтез вещества из элементарных частиц требует затраты энергии на образование их связи в нейтроне, атоме, молекуле, веществе.  9.2. Электрическое сопротивление —  рассеяние электрино   Электрино электрического тока, подлетая к проводнику, под действием притяжения отрицательного избыточного заряда проводника, например, меди, встречают его положительные поля, которые производят отталкивающее действие на электрино, которое как бы зависает на некотором расстоянии от поверхности проводника. Но под действием разности потенциалов или, что то же, разности концентраций электрино в двух точках проводника и взаимного отталкивания электрино приобретают спиральное движение над проводником и с заходом в его межатомные каналы. Спиральное движение имеет две составляющие скорости: поступательную и орбитальную. При встрече с электрино вихрей атомов проводника электрино электрического тока претерпевают столкновения:   — механические — ударные;   — электродинамические — зарядовые;   — послойные, когда ток сверху, а вихрь атома под током.   В связи с возмущающим действием атомов спираль тока является не ровной, а зигзагообразной.   При столкновениях с большими скоростями (скорость электрино в вихре достигает 1021 м/с и такой скоростной вихрь сильно влияет на относительно медленный ток ~108 м/с) электрино разлетаются как шары. Часть электрино убывает безвозвратно, составляя рассеяние электрино, а оставшиеся тормозятся действием электрино вихрей. Указанные процессы являются причиной электрического сопротивления.

 

Каждое электрино электростатически связано с избыточным отрицательным зарядом атома (привязано как на ниточке, веревочке или упругой пружине). При рассеянии эти нити — гравитационные струны рвутся, что также требует энергии и вызывает сопротивление.

 

Чем толще и мощнее вихрь атома проводника, тем больше его сопротивление. Так тантал (Та) имеет удельное сопротивление 0.13 Ом·мм2/м, которое в 7.7 раза больше, чем у меди.  9.3.

 

Природа радиоактивности   Металлы с большой атомной массой, имеющие большие вихри электрино вокруг каждого атома, неизбежно в силу неравномерности движения и концентрации пополняют вихри соседних атомов, нейтрализуя их заряд и ослабляя межатомные связи, до тех пор, пока атом не становится положительным ионом.

 

Только тогда свободные электроны становятся гиперчастными генераторами энергии и производят послойное отбирание электрино с поверхности положительного атома (иона). Подготовительный процесс к такого рода ФПВР идет длительное время, а ФПВР — краткий миг. При самораспаде больших атомов, например, 238U, постоянно идет излучение электрино (?- излучение), электронов (?-излучение), нейтронов и различных фрагментов, например, ?-частиц (4Не). Причем пока атомы не станут положительными ионами ФПВР не происходит. Но потом распад может продолжаться до полного расщепления вещества, например, 235U, на элементарные частицы. Скорее всего именно поэтому 235U в природе мало, всего 0.72%, видимо, это количество является критическим, после превышения которого происходит полный распад. Таким образом, механизм радиоактивности включает в себя в первую очередь вихревой изотопный распад атома до состояния положительного иона, и во вторую очередь — ФПВР как взаимодействие электрона-генератора с положительным ионом.

 

Как видно, первичным действующим началом, вызывающим радиоактивность, является электрино вихря тяжелых атомов, а вторичным — ФПВР.   Кроме того, при любых атомных процессах образуются неустойчивые радиоактивные изотопы. При интенсивном распаде в атомном реакторе образуются практически все радиоактивные изотопы. При щадящем распаде в процессе, например, обычного или азотного горения воздуха радиоактивные изотопы, образующиеся в мизерных количествах, тут же распадаются, своим излучением электрино способствуя ослаблению межатомных связей и горению в целом, то есть работают как катализаторы процесса горения. В переходных процессах ,когда энергия некоторое время не востребована для совершения полезной работы, эта невостребованная энергия в виде скоростных электрино (от ФПВР) излучается за пределы зоны реакции, что можно зафиксировать приборами радиационного контроля как всплеск радиоактивности.  9.4.

 

Отжиг металлов и магнетизм   При отжиге (нагревании) любого вещества увеличивается частота колебаний атомов. Отрицательно заряженные атомы, имеющие вокруг себя вихри электрино, сбрасывают их за счет увеличившихся центробежных и других динамических сил, превышающих прочность связи частиц с атомом. Например, молекула азота N2 вообще имеет в вихре постоянно только одну частицу — электрино. Так и в магнитных металлах, вихрь уменьшается до минимума, который уже не ощущается как магнитная индукция. Отжиг не только уничтожает собственные вихри, но и разбрасывает по разным направлениям векторы оставшихся вихрей-импотентов. Именно поэтому отожженные металлы не проявляют магнитных свойств.   Это нужно только при переменных магнитных полях, при перемагничивании магнитных материалов, чтобы не было сопротивления собственных вихрей электрино.

 

Собственные вихри атомов всегда значительно мощнее внешнего магнитного потока: по плотности, объему потока электрино, скорости (1021 м/с против ?108 м/с для электрического тока). Вихри — гироскопы, вращающиеся с бешенной скоростью, так что развернуть их внешним магнитным полем очень трудно. Но развернутые вихри как гироскопы сохраняют свое направление. Поэтому при перемагничивании вихри-гироскопы оказывают большое сопротивление. Чтобы этого не было отжигают металл, оставляя атомы «лысыми» — без вихрей электрино. Так измерения показывают, что остаточная индукция, например, стали составляет 0.15…0.25 Тл вместо 2.4 Тл (индукция насыщения), то есть в 10…15 раз меньше и это даже на коническом концентраторе, о котором речь в следующем параграфе.  9.5.

 

Концентраторы магнитного потока   Иногда для увеличения силы притяжения полюсов магнитов или увеличения магнитной индукции в зазоре между полюсами применяют концентраторы магнитного потока.

 

Распространенным концентратором является конусообразный призматический полюс, который применяют вместо плоского полюса. При этом сила притяжения увеличивается пропорционально отношению площади сечения магнита на входе магнитного потока к площади сечения, через которое он выходит из полюса (там, где выходит, полюс является северным магнитным, обозначаемым обычно буквой N).

 

Казалось бы, сечение полюса меньше и сила должна быть меньше: ведь при скашивании конуса или призмы до острой кромки или жала, несмотря на указанное классическое соотношение, сила, очевидно, будет нулевой.   Рассмотрим суть явления. Атомы в магните, имея свои вихри электрино, в количестве, например, 5% от значения избыточного заряда, качают магнитный поток электрино как насосы. Поскольку насосы как бы соединены последовательно в ряд по ходу межатомного туннельного (коридорного) канала, то их напоры, потенциалы, концентрации электрино в потоке складываются и на выходе имеем их максимальными.

 

В то же время 95% заряда каждого атома на том же выходе (конусе) было свободно от вихрей. Магнитный же поток выносит на поверхность конуса избыток зарядов в виде частиц-электрино.

 

Эти электрино могут остаться (не быть рассеянными), так как их притягивает еще 95% заряда атома. То есть их количество и магнитная индукция как плотность потока может возрасти, как видно, в 20 раз.

 

Суммарный заряд электрино на остром конце полюса выхода магнитного потока может быть даже выше, чем отрицательный избыточный заряд магнита. А раз индукция больше, то притяжение полюсов больше, так как притяжение — это суперпозиция (перекрестное взаимодействие) полярных зарядов.

 

Обычно в зоне острия магнита не только больше концентрация и плотность потока электрино (магнитная индукция), но и скорость электрино, может быть свечение на острой кромке в атмосферном воздухе, тихий пробой, электрический разряд.   Магнитный порошок как однодоменная структура малого размера, имитирующего жало конуса, также является концентратором магнитного потока. Магнитная индукция возрастает настолько, что ее (потока, плотности и скорости электрино) достаточно для нейтрализации и разрушения структуры воздуха и кислорода на атомы, с которыми начинают взаимодействовать электроны-генераторы энергии: происходит ФПВР с воспламенением на открытом атмосферном воздухе. Поэтому магнитные порошки, например, самарий-кобальт, хранят в банке с углеводородом.   Концентрации магнитного потока можно добиться также тяжелыми металлами, имеющими большие вихри электрино вокруг атомов.

 

Эти вихри поглощают, экранируют, магнитный поток, но зато сами возрастают за счет магнитного потока и оказывают более сильное, например, каталитическое — разрушительное воздействие на прокачиваемое мимо них вещество.  10.

 

Почему?  10.1. Почему дистиллированная вода —  диэлектрик?   Дистиллированная вода, как известно, плохо проводит электрический ток, по сути — является изолятором.

 

Чтобы проводить ток в жидкой среде нужны носители этого тока: положительные и отрицательные ионы. В водяных растворах — это ионы солей и примесей, поэтому растворы хорошо проводят электрический ток, а чистая дистиллированная вода, или бидистиллят или вода высокой чистоты (ВВЧ) — нет, не проводит ток.   Для того, чтобы не проводить ток вода должна быть нейтральной, то есть иметь взаимно компенсированные заряды отдельных ее частей и — в целом. Поскольку известно, что молекулы воды полярны, то их полярные заряды тоже должны быть компенсированы. И, наконец, структурные образования жидкой воды должны иметь какой-нибудь один заряд (плюс или минус), а не два одновременно: тогда, вследствие отсутствия одного из полярных носителей тока, его и не будет (это если вода не совсем нейтральна).

 

Из простого уравнения химической реакции образования воды 2Н2 + О2 = 2Н2О следует, что в левой части располагаем двумя электронами связи в каждой молекуле водорода и одним электроном связи в молекуле кислорода — всего пятью электронами 2 х 2е + 1е = 5е. Поскольку каждая из совокупности молекула воды должна быть одинаковой, то на одну молекулу воды должно приходиться два целых электрона связи кислорода с водородом, а поскольку молекул (в реакции) — две, то они ассимилируют четыре электрона, а пятый располагаемый по реакции электрон становится электроном связи полученных двух молекул воды.

 

Тогда цепочка молекул воды выстраивается в следующем виде:   и т.д.

 

Всего монокристалл воды содержит 3761 молекулу Н2О. Итак, в жидкой воде все молекулы Н2О — одинаковы, каждая имеет по два электрона связи водорода с кислородом, и каждая предыдущая соединена с последующей в монокристалле одним электроном связи самих молекул воды. В принципе можно считать, что молекул воды Н2О с двумя и тремя электронами — поровну, но в таком рассуждении суть все же теряется, так как молекулы должны быть одинаковы и соединены между собой электронами связи.   Проверим баланс электрических зарядов цепочки молекул воды. Не повторяя расчетов, данных в книге /6/, запишем результат: каждая молекула воды с двумя электронами связи имеет избыточный заряд . В то же время электрон связи двух соседних молекул имеет заряд .

 

В цепочке монокристалла воды на один электрон связи молекул воды приходится по половине заряда соединяемых им двух молекул, так как остальные половинки зарядов этих молекул отданы другим электронам связи (справа и слева от рассматриваемых двух молекул воды). Как видно, получается почти баланс зарядов , что составляет от заряда одной молекулы воды.

 

Как видно, жидкая дистиллированная вода является почти нейтральной и имеет слабый положительный избыточный электрический заряд, составляющий всего 0, 025% от заряда молекулы воды: этого достаточно, чтобы вода была диэлектриком и плохо проводила электрический ток.

 

10.2.

 

Почему небо голубое,  а скорость света — разная?   Небо голубое потому, что в земной атмосфере расстояние между элементами электринного газа равно длине волны голубого света. Атмосфера является мощным естественным световым фильтром голубого цвета, что мы и наблюдаем визуально. При достижении лучей Солнца атмосферы Земли свободные частицы-электрино участвуют в образовании голубого цвета. Подробности этого процесса имеются в книге /5/.   Однако, если спросить: какого цвета солнечный луч, ответят: желтого. То есть, атмосфера как голубой фильтр пропускает также желтый свет с большей длиной волны и меньшей частотой.

 

Более того, люди ощущают тепло инфракрасных, тепловых, лучей, еще менее частотных; загорают — под ультрафиолетовыми лучами высокой частоты.

 

Как видно, голубой фильтр, как и любой другой фильтр, пропускает весь спектр частот световых лучей.

 

При измерении скорости света оптического диапазона частот первыми приемника достигают наиболее скоростные лучи — фиолетового цвета. Именно их скорость принимают за скорость света, постоянную для любого монохроматического пучка, так как фиксируют в любых опытах только ее, а скорость пучков света менее скоростных уже не фиксируют. И сколько бы раз не измеряли таким способом, скорость света всегда будет казаться постоянной.   Скорость света зависит от длины волны, связанной с ней частоты, которые определяются диаметром электронной глобулы фазового перехода высшего рода (ФПВР), описанного выше многократно. Именно в этой глобуле рождается свет, она является генератором, источником света. При этом накопленные в глобуле электрино под действием разности концентраций (потенциалов) покидают глобулу, образуя структуру света вокруг электронного луча.

 

Взаимодействуя друг с другом, электрино как бы подталкивают друг друга. Конечно, если количество подталкиваний в единицу времени (частоту), например, удвоить, то понятно, что скорость тоже возрастет в два раза, длина волны уменьшиться в два раза, а частота возрастет, соответственно, в 4 раза, так как она равна .  10.3. Почему воздушная атмосфера не падает  на Землю, не улетает от нее и не взрывается?   Рассмотрим численные значения электрических избыточных статических зарядов основных компонентов воздуха: азота и кислорода, данные о которых приведены в /6/.   Заряды атомов азота и кислорода оба являются положительными вследствие недостатка одного структурного электрона в атоме как азота, так и кислорода. Оба заряда по численному значению почти равны друг другу и лишь немного меньше заряда электрона (по абсолютной величине):           Заряды молекул азота и кислорода:       Атомы азота в молекуле скреплены двумя электронами. Поэтому молекула азота является прочной и обладает относительно небольшим отрицательным зарядом, делающим азот химически менее активным, чем, например, кислород.   Два атома в молекуле кислорода скреплены только одним электроном.

 

Поэтому молекула кислорода является менее прочной, чем молекула азота и более химически активной (если судить по заряду, то — в 15.5 раз).   В объеме воздуха при нормальных условиях находится 79% азота и 21% кислорода. Это значит, что на каждую молекулу кислорода приходится по 4 молекулы азота (по объему). Суммарный электрический заряд атмосферного воздуха, без учета других газов из-за их малого количества, составит:     Как видно, заряд атмосферного воздуха является положительным. Именно поэтому воздушная атмосфера притягиватеся электростатически к Земле, имеющей противоположный по знаку, отрицательный избыточный электрический заряд. Поэтому и не улетает!   В то же время, притягиваясь электростатически к Земле, воздушная атмосфера встречает поля положительных структурных зарядов Земли, которые как одноименные заряды отталкивают компоненты атмосферы, не давая им упасть на землю. Также ведет себя и геомагнитное поле Земли. Это ответ на второй вопрос.

 

Для ответа на третий вопрос о невозможности взрыва атмосферного воздуха вспомним, что при наличии следов углеводородов (смазочное масло, топливо) взрывается чистый кислород. Взрыв — это быстрое горение, то есть при взрыве происходит фазовый переход высшего рода (ФПВР) кислорода с выделением энергии, происходит почти мгновенно. А воздух не взрывается даже от сильных атмосферных электрических разрядов — молний. Ответ, как следует из предыдущего анализа, заключается в том, что в составе воздуха находится относительно инертный газ — азот, который при активном кислороде является балластом. Более того, будучи заряжены отрицательно, молекулы азота окружают каждую положительно заряженную молекулу кислорода своеобразной оболочкой, которая экранирует кислород и защищает его от взрыва. Значит, для того чтобы добраться горению до кислорода, необходимо не только разрушить его молекулу на атомы, но и, в первую очередь разрушить структуру агрегатов воздуха из кислорода и окружающего его азота, то есть нарушить их электростатическую связь каким-либо энергетическим воздействием. Таким воздействием может быть, например, сфокусированный луч лазера /1/. В фокусе луча лазера в малом объеме воздуха импульсом подводится такое количество энергии, что ее достаточно для разрушения структуры воздуха, структуры кислорода, даже — структуры азота и возникновения взрыва воздуха. Но это — исключительный случай, а обычный воздух при обычных воздействиях, включая молнии, не взрывается, если коротко сказать из-за наличия в нем азота.

 

10.4. Почему температура термодинамического цикла двигателя внутреннего сгорания  при автотермическом режиме снижается,  а мощность возрастает?   При автотермическом, бестопливном, режиме горения воздуха в цилиндрах, например, автомобильного двигателя, максимальная температура в камере сгорания снижается с 1800…20000С до примерно 600…7000С. В соответствии с понятием цикла Карно и его коэффициента полезного действия (КПД) следовало ожидать снижения полезной мощности. Однако, в цикле Карно теплоемкость и газовая постоянная рабочего тела должны быть неизменными, чем и отличается идеальный цикл Карно от нашего реального. Как уже было многократно повторено и, в том числе, сказано в предыдущем параграфе, воздух из единого структурированного вещества, состоящего, в основном, из соединенных электростатически агрегатов азота и кислорода, при автотермическом режиме горения разрушен во-первых, на смесь газов, в которой нарушена электростатическая связь между ними; во-вторых, молекулы самих газов разрушены на атомы и электроны их связи; в-третьих, и атомы могут быть разрушены на отдельные фрагменты. В результате таких разрушений вместо единого воздуха получается диссоциировання смесь значительно более мелких фракций. Диссоциация, как известно, вызывает увеличение удельного объема, газовой постоянной и теплоемкости смеси. На этом свойстве было основано создание энергоустановок на диссоциирующих газах, например, тетраксиде азота, с повышенным КПД. Другими словами, если при обычном горении повышение давления газа в цилиндрах двигателя достигается за счет повышения температуры газов, то в диссоциирующей смеси — за счет размельчения ее компонентов и увеличения удельного объема. То есть сам термодинамический цикл становится меньше похож на циклы Карно, Брайтона, Отто, Дизеля и больше похож на цикл Стирлинга.   Понижение температуры реакции при разрушении (катализе) компонентов реакции современная химия объясняет понижением необходимой энергии активации для ее начала в первом звене цепной реакции, в результате которой получаются продукты сгорания. На самом деле реакция энерговыделения (ФПВР) идет как в обычном, так и в автотермическом, режимах одинаково, а химическая реакция соединения отработанных элементов в продукты сгорания является только следствием ФПВР. Снижение температуры вызвано более равномерным по объему горением диссоциированного воздуха, что равносильно понятию не максимальной, а средней температуры в камере сгорания. Но если средние температуры обычного и автотермического режимов горения воздуха примерно одинаковы, а в последнем увеличился удельный объем, то из этого следует увеличение мощности двигателя, что и наблюдается практически.

 

ЧАСТЬ ВТОРАЯ          РЕАЛИЗАЦИЯ НОВЫХ  ИДЕЙ В ЭНЕРГЕТИКЕ    11. Бестопливный автотермический  режим самогорения воздуха  в двигателе внутреннего сгорания   Автотермия — это явление самогорения, в частности, воздуха, заключающееся в том, что процесс горения воздуха, например, в двигателе внутреннего сгорания, происходит самостоятельно, автономно, самодостаточно — без расходования органического или другого вида топлива.   Разработка теории /1, 2/ заняла семь лет, практическая работа, в первую очередь, на карбюраторных автомобильных двигателях, — еще три года.

 

Впервые бестопливный режим работы двигателя (на холостом ходу) был получен 25 июля 2001 года. Понадобилось еще более одного года, чтобы 25 августа 2002 года на автомобиле ВАЗ-2106 был получен бестопливный режим самогорения воздуха в цилиндрах двигателя при движении автомобиля с нагрузкой и скоростью 120 км/час. Расход топлива определялся оперативно с помощью серийно выпускаемого штатного путевого компьютера и датчика расхода топлива, установленных непосредственно в автомобиле. Показания расхода топлива датчиком и компьютером контролировались периодически объемным способом, замерами расхода с помощью мерной мензурки, замерами уровня в топливном баке, с помощью бутылки, устанавливаемой на мерный сосуд вместо бака в непосредственной близости к поплавковой камере карбюратора. Контрольные замеры показали, что точность датчика расхода топлива соответствует объемному измерению, в частности, когда датчик и компьютер показывают нулевой расход топлива, тогда и уровень топлива в измерительной мензурке (диаметром 1 см и длиной 1 м) тоже неподвижен, находится на одной и той же отметке.   На основных режимах движения автомобиля:   — со скоростью 60…70 км/ч и числом оборотов двигателя 2000…2500 об/мин.;   — со скоростью более 70 км/ч и числом оборотов двигателя более 3500 об/мин.;   — а также на холостом ходу с числом оборотов двигателя 200..1500 об/мин.

 

расход топлива отсутствовал совсем, был нулевым.   При пуске и прогреве двигателя, а также — на переходных режимах и перегазовках имел место кратковременный расход топлива такой, что в среднем при общем пробеге более 7000 км он составил 1.0…1.5 л/100 км пути.   Режим бестопливного горения обеспечивался обработкой воздуха и настройкой карбюратора на бедную смесь без каких-либо изменений конструкции двигателя.  12. Решающие разработки, обеспечившие  выход на бестопливный режим   Теоретические разработки изложены ранее в /1, 2/, а также — в настоящей книге, поэтому нет необходимости в повторном подробном описании.  12.1. Раздельная до- и внутрицилиндровая  обработка воздуха   Обработка воздуха каким-либо инициирующим воздействием (магнитным, электрическим, тепловым, ударным и другими, указанными в соответствующих разделах первых двух книг) заключается в нейтрализации положительно заряженным потоком мелких частиц-электрино межатомных электронных связей в молекулах азота и кислорода атмосферного воздуха, в ослаблении этих связей, разрушении молекул на атомы, фрагменты и высвобождение электронов связи, которые становятся свободными и начинают работу генераторов энергии в описанном ранее процессе фазового перехода высшего рода (ФПВР).   Применение только внутрицилиндровой обработки воздуха требует потоков высококонцентрированной энергии типа лазерного луча, в фокусе которого, как известно, воздух взрывается /1/ без какого-либо топлива, самостоятельно. Такой способ сейчас невозможен ввиду низкого коэффициента полезного действия лазера (1…3%) и отсутствия других подобных по концентрации энергии устройств. Поэтому процесс обработки воздуха был разбит на два этапа: доцилиндровую и внутрицилиндровую обработку. Эта мера значительно облегчила выполнение задачи и позволила использовать достаточно простые средства.  12.2. Определение роли топлива  в процессе горения   То, что горит не топливо, а кислород было ясно достаточно давно /1/. Этому способствовали следующие факты: взрыв воздуха в фокусе лазерного луча; взрыв чистого кислорода при наличии только следов углеводородов; электрический разряд (искра, плазма, шаровая молния — это тоже горит воздух).   Но впервые роль топлива как донора электронов была установлена Д.Х.Базиевым /5/. Еще раз было подтверждено, что горит не топливо, а, в первую очередь, кислород воздуха. Но если горит не топливо, то можно от него избавиться?! Был разработан способ исключения топлива как компонента горения путем использования электронов связи самого воздуха.

 

В этом и была главная задумка автотермии — самогорения воздуха, чего Базиев в своих книгах /5-7/ не заметил, прошел мимо бестопливного горения. Впервые разработки по бестопливному горению были опубликованы в /1/ и встречены Базиевым скептически как потеря времени.

 

Но может быть более значимой является вторая роль топлива как главного «врага» и гасителя автотермической реакции горения /2/. Вкратце, вторая роль заключается в том, что переизбыток электронов связи в топливе приводит к значительной нейтрализации всех положительных зарядов и излучений в камере сгорания.

 

Такой процесс является обратным процессу до- и внутрицилиндровой обработки воздуха, что препятствует автотермии — самогорению воздуха непосредственно. Только исключение топлива в совокупности с обработкой воздуха дает возможность автотермии. Понимание этого факта значительно ускорило и продвинуло вперед исследования по бестопливному горению.  12.3. Единство и возможность усиления магнитной и каталитической обработки веществ   Катализ — разрушение (по-гречески) крупных объектов (молекулы, атомы…) на более мелкие фрагменты, чего не понимает современная наука о катализе и поэтому вместо четкого физического механизма дает формальные объяснения, о чем говорилось ранее. Так вот, магнитный поток является скоростным потоком мелких положительно заряженных частиц — электрино, движущихся по линейным траекториям в межатомных каналах магнитов и вне их со скоростью порядка 1019 м/с как в современных ускорителях. В катализаторах, не являющихся магнитами в силу отсутствия туннельных, коридорных, межатомных каналов, вихревые потоки электрино вокруг атомов кристаллической решетки со скоростью порядка 1021 м/с так же , как в магните являются потоками «снарядов», которые способны нейтрализовать, ослабить межатомные связи атомов в молекулах вещества-мишени и даже разрушить молекулы на атомы и более мелкие фрагменты, что и называется катализом по-гречески.   Как видно, магнитная и каталитическая обработка веществ — это один и тот же процесс разрушения, но проводимый разными средствами.   Более того, магнитным потоком можно усилить вихрь электрино вокруг атомов в катализаторе, разместив его в виде каких-либо гранул с губчатой развитой поверхностью между полюсами магнита и тем самым усилить обработку, например, воздуха в целом.   Установленные выше обстоятельства стали решающими в практической реализации явления автотермии — самогорения воздуха.  13.

 

Алгоритм настройки двигателя  на режим самогорения воздуха   Режим бестопливного горения воздуха (автотермия) не требует каких-либо конструктивных изменений в двигателе внутреннего сгорания, так как сам процесс энерговыделения (ФПВР) такой же, как и при обычном горении с участием топлива как донора электронов. При автотермическом горении используются электроны самого воздуха, поэтому отпадает необходимость в топливе. Для обеспечения режима автотермии нужна настройка только некоторых вспомогательных систем и элементов оборудования.  13.1. Выбор материалов и разработка конструкции оптимизатора для обработки воздуха   Опуская описание этапов поиска инициирующих воздействий, скажем, что, в конечном итоге, остановились на магнитном и каталитическом воздействии как наиболее удобном, доступном и достаточном для доцилиндровой обработки воздуха. Устройство для обработки воздуха условно назвали оптимизатором, не подобрав лучшего наименования.

 

Обработка воздуха при пропускании его в воздушном зазоре между полюсами магнита осуществляется, во-первых, магнитным потоком. Для успешной обработки нужна достаточная магнитная индукция (плотность потока электрино), а также — достаточная скорость электрино. Пока нет опробованных расчетных методик эти параметры определялись экспериментально путем выбора необходимых материалов и разработки конструкции оптимизатора. Это делалось на основе следующего соображения: магнитная индукция нужна для прицельного попадания в мишень-молекулу азота и кислорода воздуха. Поскольку молекулы в воздухе при своем взаимодействии друг с другом все время движутся внутри своих глобул с высокими скоростями, а сама молекула по своему размеру примерно на три порядка меньше размера (диаметра) глобулы, сами понимаете, что попасть мелким скоростным одиночным снарядом-электрино в быстро движущуюся по разным направлениям тоже малую мишень-молекулу практически невозможно. Для повышения вероятности попадания необходимо сразу много снарядов — поток электрино высокой плотности, то есть, достаточная магнитная индукция.   Магнитная индукция тем выше в воздушном зазоре между полюсами магнита, чем меньше толщина этого зазора, так как молекулы азота воздуха захватывают электрино из магнитного потока, раскручивают их и выбрасывают из зоны своего вихря (вокруг молекулы), нарушая магнитный поток, чем и определяется рассеяние и сопротивление, выпучивание и снижение магнитной индукции.   Скорость магнитного потока в межатомных каналах достигает порядка 1019 м/с как в ускорителях и, в принципе, достаточна даже для разрушения молекул. Но эта скорость в воздушном зазоре быстро уменьшается обратно пропорционально отношению толщины зазора к диаметру межатомного канала. В то же время скорость электрино в вихре вокруг атомов достигает порядка 1021 м/с, но для воздуха доступны только те атомы и их вихри, которые находятся на поверхности магнитных полюсов в зазоре, по которому идет воздух.

 

На основании изложенных принципиальных соображений, сделанных с учетом представлений гиперчастотной физики, однозначно следует уменьшить толщину воздушного зазора между полюсами магнита, в то же время обеспечив достаточную площадь сечения каналов для прохода воздуха в зазорах.

 

Были опробованы постоянные магниты на основе ферритов железа, ферритов стронция, самарий-кобальта, неодима-железа-бора, а также — электромагниты. В принципе все они дают возможность получить эффект автотермии — бестопливного самогорения воздуха. Но столько привходящих факторов, влияющих на выбор (значение индукции насыщения, другие магнитные свойства, стоимость, доступность, конструкция и условия использования…), что трудно сказать каким магнитам отдадут предпочтение при серийном производстве.

 

Катализаторами, размещенными в зазоре между полюсами магнита (в магнитном поле), могут быть практически все металлы 6-го периода таблицы Менделеева, а также — другие химические элементы и соединения, обладающие каталитическими свойствами. При этом следует иметь ввиду, что чрезмерное усиление разрушительной способности оптимизатора, может привести к возгоранию и взрыву воздуха, что преждевременно, так как эти свойства нужны при внутрицилиндровом воздействии, а не при доцилиндровой обработке воздуха, да и опасны, как все взрывы и воспламенения. Следует учесть, что редкоземельные металлы, не являясь магнитами, но обладая мощным вихрем электрино вокруг своих атомов, имеющих, к тому же, специфическую структуру (описано ранее), горят на открытом воздухе.

 

Так указывается в справочниках и технической литературе, но на самом деле «горит» сам воздух, обработанный вихрями электрино редкоземельных металлов, а атомарный кислород плазмы горения после ФПВР соединяется с металлом, образуя их окислы.   Предпочтительными конструкциями оптимизаторов являются те, в которых минимальна масса магнитов и магнитопроводов. В частности, магниты могут образовывать круговой воздушный зазор (см.§16.1), радиальный зазор (см.§16.2), линейный воздушный зазор как вариант предыдущего, с соединением магнитов магнитопроводами в броневой магнит. Указанный здесь второй вариант вообще не имеет магнитопроводов, а третий вариант — минимальное их количество.  13.2. Настройка карбюратора   Меня, как не автолюбителя, не знакомого с устройством карбюратора, удивила его примитивность и сложность. Фактически в одном общем карбюраторе объединены до 9-ти частных карбюраторов (на каждый режим работы двигателя автомобиля):  1. Система главного хода первичной камеры.

 

2. Система главного хода вторичной камеры.

 

3. Система пуска.  4.

 

Система холостого хода первичной камеры.  5.

 

Система холостого хода вторичной камеры.  6. Переходная система первичной камеры.  7. Переходная система вторичной камеры.

 

8. Эконостат.

 

9.

 

Насос-ускоритель, пожалуй — все!

 

В каждой системе еще много разных элементов (воздушные и топливные жиклеры, сверления и трубки, эжекторы и клапана…). Такую многоэлементную конструкцию, конечно, сложно настроить так, чтобы на всех режимах соблюдался бетопливный процесс горения, особенно, на переходных и перегазовках. Общий принцип настройки состоит в том, чтобы по возможности вообще избавиться от топлива: перекрыть, заглушить те каналы и жиклеры, по которым оно поступает из поплавной камеры карбюратора в воздушный тракт и далее в двигатель, или — оставить топливные жиклеры минимальных размеров, а воздушные — максимальных. Топливо в минимальном количестве нужно только для облегчения пуска и прогрева (пока нет для этого бестопливных устройств) на те несколько минут, которых для этого достаточно. Для остальных режимов (холостой ход, движение автомобиля) топливо вообще не нужно. Однако, специфика карбюраторного двигателя в том, что, например, при закрытой или слабо открытой заслонке первичной камеры, поршнями двигателя создается сильное разрежение на всасывании, под действием которого топливо принудительно подсасывается в двигатель, хотя этого и не нужно. При открытых заслонках под действием скоростного потока воздуха в эжекторах также создается разрежение, под действием которого подсасывается топливо, хотя оно для горения обработанного в оптимизаторе воздуха и не нужно.   Практически при полностью отключенном от вторичной камеры топливе и открытии ее заслонки (на больших скоростях и нагрузках) большие массы атмосферного воздуха попадают во всасывающий тракт двигателя, снимая то высокое разрежение, которое было до открытия заслонки вторичной камеры. Снятие большого разрежения и установление почти атмосферного давления устраняет подсасывание топлива, отсутствие которого благотворно, как видели выше, влияет на обеспечение бестопливного режима горения.

 

Повышается и литровая мощность двигателя за счет диссоциации воздуха в цилиндрах двигателя.

 

Более детально расписывать настройку карбюратора нет возможности, так как она производится практически индивидуально на каждом двигателе.

 

Инжекторная система подачи топлива значительно проще, так как от одной заслонки фактически дается команда на компьютер и, далее, — на инжектор. Но даже, если поставить оптимизатор и ничего не менять, то компьютер будет насильно гнать топливо в двигатель без такой необходимости. То есть, нужно адаптировать, приспособить программу компьютера к условиям бестопливного горения, что усложняет настройку. Можно вообще отключать топливо на режимах движения автомобиля: пусть инжектора работают вхолостую, но зачем тогда вся эта система. Поэтому настройка инжекторных и дизельных двигателей — это отдельная работа с учетом опыта, полученного на карбюраторных двигателях.  13.3. Регулировка зажигания   Здесь мы подошли к внутрицилиндровой обработке воздуха для бестопливного горения. Конечно, лазер бы решил всё: и до- и внутрицилиндровую обработку, так как обеспечивает взрыв воздуха, но подходящих и экономичных лазеров пока нет.

 

Поэтому самое распространенное средство инициирования воспламенения воздуха в цилиндрах двигателя — это электрический разряд — искра зажигания. В современных автомобилях искра слабенькая, с энергией примерно 30 мДж (миллиджоулей). Это вызвано тем, что присутствие топлива в обычных автомобилях облегчает воспламенение воздуха и в большей энергии искры нет необходимости. Для автотермического бестопливного режима воспламенения воздуха, даже предварительно обработанного, надо еще постараться разбить межатомные связи как кислорода, так, желательно, и азота, и для этого, по ориентировочным расчетам требуется энергии примерно 1.0 Дж, то есть ?в 30 раз больше, чем в обычной слабой искре.   Кроме того, обычно воспламенение происходит с одной стороны цилиндра, где находятся электроды свечи зажигания.

 

Неравномерность давления, вызванная такой асимметрией, приводит к перекосу поршня, потерям на трение и другим отрицательным обстоятельствам, снижающим эффективность двигателя. Для увеличения энергии искры, равномерности воспламенения топлива в камере сгорания цилиндра двигателя рекомендуются изготавливаемые серийно свечи зажигания с конденсатором — накопителем энергии и конусным распределителем факела, либо форкамерно-плазменные свечи зажигания с малой форкамерой, имеющей форму сопла Лаваля, либо другие подобные свечи зажигания. Они облегчают получение режима бестопливного горения воздуха.   Угол зажигания регулируется индивидуально на каждом двигателе, а лучше — цилиндре.

 

Наиболее предпочтительным является угол не опережения, а запаздывания зажигания, после верхней мертвой точки (ВМТ) поршня на рабочем ходе такта расширения, так как при таком угле, равном +900, на кривошип приходится максимальный крутящий момент. Практически угол зажигания может быть в пределах -700…+700 в зависимости от эффективности, наибольшей мощности, развиваемой двигателем.

 

Иногда, если достаточна доцилиндровая обработка воздуха, воспламенение воздуха может быть обеспечено повышением тепературы воздуха в цилиндре от сжатия, калильным эффектом, волновыми процессами в цилиндре и другими факторами. В этом случае искры зажигания не нужно, двигатель работает как бы без системы зажигания, и такие случаи были /1/, когда машина работала даже без электрических проводов или других элементов системы зажигания, то есть, в дизельном режиме. Дизельный режим наступал также в движении, когда принудительно отключалось зажигание во время движения автомобиля накатом.

 

При этом двигатель работал длительное время в дизельном автотермическом режиме и останавливался только тогда, когда двигатель тормозили включением сцепления с ходовой частью автомобиля.  13.4.

 

Отработка основных режимов двигателя  13.4.1. Пуск, прогрев и холостой ход   Необходимость отсутствия топлива при автотермическом режиме горения воздуха в камерах сгорания цилиндров автомобильного карбюраторного двигателя требует настройки на предельно бедную смесь при пуске, прогреве двигателя и его работе на холостом ходу. Подача минимального количества топлива облегчает пуск и прогрев двигателя, его подготовку к режиму автотермии. В прогретом состоянии при работе на холостом ходу в установившемся режиме с числом оборотов (проверено) от 200 до 1500 об./мин., а при больших оборотах тем более, топливо вообще не требуется.   Для выполнения указанных условий выполняют следующие основные операции (на примере ВАЗ 2106 и карбюратора «Солекс»):   1. Заменяют штатный воздушный жиклер на жиклер большего диаметра, например, ?2.0 мм.   2. Заменяют штатный топливный жиклер холостого хода на жиклер меньшего диаметра, например, ?0.38 мм.   3. Устанавливают: на первичной камере топливный жиклер, например, ?0.905 мм; на вторичной камере — ?0.95 мм и воздушный жиклер ?1.65 мм.   4. Заглушают экономайзер.   5. Устанавливают уровень топлива 26…27 мм.   6. Винтом качества смеси устанавливают предельно бедную смесь, чтобы только двигатель запускался.   7. Винтом регулировки положения заслонки «газа» приоткрывают ее максимально так, чтобы двигатель запускался и работал на холостом ходу.

 

8. Устанавливают обороты холостого хода в пределах 800…1000 об./мин.   9. Прогревают двигатель до установившегося режима работы.   10. Устанавливают угол зажигания по максимальным оборотам двигателя, полученным при изменении угла зажигания.   11.

 

Измеряют концентрацию окиси углерода СО, меняя параметры по пп.1…10 так, чтобы концентрация СО менялась в некоторых пределах около допустимой или меньшей нормы, например, 0.10?0.05%.   12. Выбирают и оставляют параметры пп.1…10 по минимальному значению концентрации СО, как показателю хорошего горения.

 

13.

 

После каждых 1000 км пути на автотермическом режиме или по мере необходимости производится подрегулировка указанных систем.   В процессе длительной работы двигателя в режиме автотермии происходит естественная наработка катализаторов в цилиндрах, действие которых облегчает наступление автотермии.  13.4.2. Движение со скоростью 60…70 км/ч  и числом оборотов 2000…2500 об/мин.

 

После настройки холостого хода надо ездить. Указанный в наименовании параграфа режим движения характерен для перемещения по городу, причем, в основном, при работе главного хода первичной камеры карбюратора. При нажатии педали «газа» и соответствующем открытии заслонки увеличивается подача воздуха в цилиндры двигателя — это благоприятный факт для автотермического режима, так как воздух является главным и единственным компонентом горения, автотермическим горючим. В то же время увеличивается расход органического топлива через эжектор главного хода, если этот канал не заглушен — этот факт — отрицательный, его по возможности надо исключить. Мешает этому, как правило, «просадки» педали «газа» (машина не реагирует). Одновременно, топливо поступает в цилиндры двигателя также из системы холостого хода, так как просто топливо не отключить, ибо оно подсасывается за счет создаваемого поршнями разрежения. Можно включать систему холостого хода только при стоянке автомобиля, а с началом движения — отключать, например, с помощью электромагнитного клапана.   Однако при удачной настройке карбюратора с наступлением автотермического бестопливного режима горения воздуха поступление органического топлива к двигателю автоматически прекращается.

 

Это можно объяснить двумя факторами. Первым фактором, видимо, является повышенное относительно обычного давление на такте выпуска газов, которое при продувке проникает во впускной коллектор и в карбюратор, отжимая топливо по топливным каналам от мест его впрыска в сторону поплавковой камеры. Повышенное давление может быть вызвано продолжающимся в воздухе на выхлопе реакции ФПВР, которой, в принципе ничто не мешает. Только при достаточном охлаждении газа ФПВР прекращается, вероятно, в пределах выхлопной системы. Свидетельством повышенного давления на впуске в двигатель может служить выбивание струйки топлива через воздушный жиклер в такт работе двигателя на малых оборотах, что наблюдалось иногда при настроечных работах.   Вторым фактором автоматического отключения подачи топлива при наступлении автотермического режима может быть своеобразный гидрозатвор, предотвращающий подсасывание топлива, как в систему главного хода, так и в систему холостого хода. Гидрозатвор образован топливными каналами от главного топливного жиклера, вверх к эмульсионной трубке и далее вверх до канала подачи топлива к эжектору главного хода первичной камеры. Таким образом, чтобы обеспечить подачу топлива, нужно преодолеть указанную высоту столба топлива с помощью разрежения, как в эжекторе главного хода, так и в системе холостого хода. Но такого разрежения при автотермическом режиме при правильной настройке — не бывает, из-за несколько повышенного давления на всасывающем тракте и, соответственно, в карбюраторе.

 

Третьим фактором является разрежение в топливном баке. Без разрежения (например, при атмосферном давлении в мерной емкости, бутылке, мензурке) топливо подсасывается даже тогда, когда оно не нужно при работающем двигателе, а также — проникает при неработающем двигателе под действием столба топлива, например, в мензурке высотой 1 м, в количестве 0,2 … 0,3 л/ч, заливая цилиндры и катализатор на их стенках, что отрицательно сказывается на работе двигателя.   По мере опробования настройки двигателя на автотермический бестопливный режим в движении, по поведению двигателя, системы управления и автомобиля в целом делают поднастройку системы до достижения нужного режима.  13.4.3. Движение со скоростью 70 км/ч  и числом оборотов более 3500 об/мин.   Этот режим — самый интересный из бестопливных режимов: при переходе к работе на вторичной камере карбюратора, характерной для самого скоростного и нагрузочного режима движения автомобиля, двигатель сразу автоматически переходит на бестопливный режим. Открытие заслонки вторичной камеры обеспечивает подачу большого количества нужного для автотермического режима воздуха как горючего. Повышение давления воздуха на входе в двигатель и соответствующее снятие разрежения уменьшает или прекращает подсасывание топлива через систему холостого хода. В то же время топливные жиклеры главных ходов первичной и вторичной камер либо уменьшены до предела, либо вообще заглушены. Все это способствует переходу двигателя на бестопливный режим. Более того, чем больше открыты заслонки камер, тем лучше условия для бестопливного режима. Именно этот режим был получен первым 25 июля 2001 года.

 

Для улучшения параметров автотермического режима при работе на первичной камере следует сдвинуть момент открытия заслонки вторичной камеры на более ранний, например, одновременно с заслонкой первичной камеры, что подбирается экспериментально.

 

13.4.4. Переходные режимы, перегазовки   Если думаете, что на этих режимах нет неожиданностей, то напрасно. Есть.   Увязка в карбюраторе сразу всех 8…9-ти основных и соответствующего числа переходных режимов приводит к тому, что если удается настроить все основные режимы на бестопливный, то переходные режимы и перегазовки, как правило, не удается, так как больше нечем. Поэтому последние идут с некоторым, небольшим, расходом топлива, причем ненужного в данный период, но вынужденно подсасываемым в двигатель. Тем не менее, в камерах сгорания цилиндров двигателя в основном идет автотермический режим горения, так как топлива подсасывается менее 1 л/ч и даже менее 0,2 л/ч.

 

Более того, при прогретом двигателе (t>900С) даже на переходных режимах и перегазовках расход топлива почти равен нулю.   Как и обычное горение, автотермический режим является атомной реакцией, в результате которой элементарные частицы — электрино отдают свою кинетическую энергию плазме горения, нагревая ее путем контактных соударений или электродинамического взаимодействия с другими участниками процесса. При этом в микроколичествах образуются некоторые химические элементы, которые тут же частично окисляются и выбрасываются с выхлопными газами (не пугайтесь, — этот процесс идет точно так же и при обычном горении). Ряд нестабильных изотопов работают как катализаторы горения.

 

При стационарных режимах работы двигателя соблюдается равновесие между выделением энергии в камерах сгорания и ее потреблением в двигателе.   На переходных режимах работы двигателя наблюдается неожиданная специфика, которая заключается в следующем.

 

Когда вы нажимаете педаль газа и открываете заслонки для подачи воздуха в цилиндры, то двигатель набирает обороты и мощность. Но педаль можно нажать очень быстро, а двигатель набирает обороты, преодолевая инерцию, не сразу, а постепенно. Это рассогласование по времени между началом усиленной реакции горения в камере сгорания и началом периода установившихся оборотов двигателя после их набора приводит к избытку невостребованной энергии скоростных электрино во время переходного периода и перегазовок. Невостребованные скоростные электрино образуют радиоактивное мягкое рентгеновское излучение, которое распространяется за пределы камеры сгорания на 0.5…1.0 м; в салоне его нет.

 

Практически излучение наблюдается вблизи камер сгорания, а его уровень достигает значения, превышающего фон в 10…400 раз, например, 4000 мкР/ч.

 

Этот уровень, превышающий допустимый, хотя и локально и кратковременно, следует учитывать при проведении работ или размещении водителя непосредственно на двигателе, вблизи него.   Но самое, пожалуй, неожиданное для людей, незнакомых с теорией, в том что импульсы такого же уровня излучений характерны не только для автомобилей с автотермическим режимом горения, но и для автомобилей с обычным режимом горения топлива. При этом, чем больше мощность двигателя, тем уровень и жесткость излучения больше. Длительность импульса определяется, как указано, периодом рассогласования времени нажатия педали газа и раскрутки двигателя до установившихся оборотов. Отсюда возникает и мера для исключения импульса излучения — медленное нажатие педали, хотя сам период настолько мал, а импульс сразу после набора оборотов пропадает совсем, что его, видимо, можно и не учитывать. В остальных режимах радиоактивность вокруг и в салоне автомобилей и с обычными и с автотермическими режимами лишь немного превышает фон и находится в пределах допустимых норм.   Излучение с частотой выше оптического диапазона точно так же наблюдается и в обычных двигателях, и при взрывах, и — на лазерном луче. При взрывах специально никто не измерял, но отмечают большие наводки на различных датчиках, а также — засветку кино- и видеопленки в момент движения детонационной волны по зоне взрыва: начало и конец взрыва нормально фиксируется в оптическом диапазоне, а в краткий миг прохода детонационной волны, например, 10 мс, засветку во весь кадр дает излучение в надоптическом диапазоне (ультрафиолетовое, рентгеновское и гамма излучения). При взрыве воздуха в фокусе лазерного луча в краткий миг импульса, например, 2мкс, непокрытые одеждой кожные покровы людей, находящихся вблизи вспышки, получают ожоги, как при загаре за целый день.

 

Все это подтверждает, что энерговыделение (ФПВР) — это атомный процесс, сопровождающийся излучением скоростных электрино.  13.4.5. Сезонные особенности   Сезонные особенности эксплуатации автомобильных двигателей и их настройки на автотермический бестопливный режим работы относятся, прежде всего, к пуску и прогреву. Сначала сам факт: настроенный на предельно бедную смесь холодный двигатель в зимнее время просто так не запускается. Этот факт никого не удивляет. Но почему в летнее время двигатель с такой же настройкой запускается и после прогрева выходит на автотермический режим, а зимой — не запускается.   Влияет совокупность факторов, к которым можно отнести: низкие температура, влагосодержание воздуха, расход топлива, уровень их каталитической обработки.

 

Низкая температура затрудняет разрушение межатомных связей в молекулах компонентов горения, в то время как высокая температура является одним из инициирующих воздействий разрушения на атомы и образования плазмы, необходимой для горения. Вторым необходимым условием горения как фазового перехода высшего рода (ФПВР) является, как было установлено /5/, наличие электронов. Если воздух и топливо в холоде при пуске двигателя плохо разрушаются, да еще топлива предельно мало, то откуда возьмется достаточное количество электронов — их нет. Именно поэтому при обычном горении и пуске расход топлива в самом начале пуска и прогрева увеличивается до трех и более номинальных значений.   Немаловажным фактором является влагосодержание воздуха. В летнее время при температуре, например, +250С и относительной влажности 50%, влагосодержание воздуха составляет 10 г/кг (десять граммов воды в виде пара на один килограмм воздуха), то есть — 1% по массе. При той же температуре и 100%-ной влажности влагосодержание (насыщенного) воздуха увеличивается до 20 г/кг, то есть — до 2%. В зимнее время воздух сухой. Его влагосодержание снижается на 1…2 порядка, то есть до десятых и сотых долей процента.

 

Во влажном воздухе на атомы разрушаются не только молекулы азота и кислорода воздуха, дающие электроны, но влага. Монокристалл воды является цепочкой молекул, соединенных электронами связи: при его разрушении освобождается сразу 3760 электронов (по одному на каждую молекулу). При разрушении молекул воды освобождается еще по два электрона на каждую молекулу.

 

Итого — три электрона на одну молекулу или, что то же, один электрон на 6 атомных единиц массы [а.е.м.]. При разрушении бензина получается примерно один электрон на 4 атомных единиц массы. Как видно, топливо и вода по эффективности их использования как горючего, поставляющего электроны, примерно одного порядка. Воздух от них отстает, так как при его разрушении получается примерно 16 а.е.м.

 

на один электрон, ставший свободным генератором энергии. Однако, и воздух и вода содержат, в отличие от топлива, достаточное количество атомов кислорода и поэтому самодостаточны для горения, так как их плазма содержит всё необходимое для ФПВР: и атомы кислорода и электроны.

 

Сравним теперь расходы топлива и воды, как влаги воздуха, в автомобильных двигателях при обычном горении. Из стехиометрического соотношения 1:15 следует, что топлива потребляется примерно 7% по массе от необходимого расхода воздуха.

 

Но и в воздухе влаги содержится от 1 до 2%, а с учетом коэффициента избытка воздуха — до 5…6%. То есть двигатель потребляет влаги примерно столько же, сколько и топлива.

 

Именно поэтому дефицит влаги, как донора электронов наравне с топливом, зимой затрудняет пуск двигателя. Из опыта, освещенного в технической литературе, например, /3/, известно, что добавка в топливно-воздушную смесь 1…2% воды улучшает процесс горения и снижает расход топлива до 30%. Кроме того, приготовление хорошей смеси 50% топлива и 50% воды, связанных на молекулярном уровне в виде нерасслаивающейся эмульсии, дает тот же эффект по теплотворной способности топлива, что и чистый бензин /2/. Этот факт подтверждает идентичность работы влаги и топлива в горючей смеси, причем именно поровну.   Из сделанного анализа следуют меры, которые нужно принимать, чтобы двигатель с обедненной смесью можно было легко запустить не только летом, но и в зимнее холодное время года:   1. Лучше всего, конечно, усилить магнитно-каталитическую обработку воздуха и топлива перед подачей в цилиндры двигателя. Тогда могут не понадобиться другие меры, что упростит систему пуска.   2. Увеличить подачу топлива на период пуска.   3. Увлажнять воздух, добавляя 1…2% влаги.

 

4.

 

Осуществлять предварительный подогрев воздуха, влаги, топлива и самого двигателя.   5. Усилить инициирующее воздействие в цилиндрах двигателя (конденсаторы-накопители, плазменные свечи зажигания и т.п.).   6. Подать в цилиндр пучок электронов извне, например, из электронной пушки.   Все эти меры, конечно, могут усложнить систему пуска двигателя, поэтому применяются в разумном сочетании друг с другом.  13.4.6. Лучший вариант подготовки двигателя  к автотермическому режиму.   В настоящее время лучшим вариантом является наработка достаточно «толстого» (~20 мкм) слоя катализатора на стенках цилиндров двигателя. Это соответствует наезду примерно 4000 … 5000 км с оптимизатором. При этом нужно намеренно занизить компрессию, например, до 7 кгс/см2, при первоначальном увеличении зазора на 20 мкм. При наработке катализатора этот зазор закроется и компрессия автоматически восстановится до 12 кгс/см2. В этих условиях двигатель может работать без топлива, без оптимизатора и без усиленных свечей на всех режимах, оборотах и нагрузках.  14. Основные направления  естественной энергетики   I. Энергетика:   1. Двигатели.   1.1.

 

Карбюраторные двигатели.   1.2. Инжекторные двигатели.

 

1.3. Дизельные двигатели.   1.4. Газотурбинные двигатели.   1.5. Другие (Стирлинга, Сказина, …

 

и т.п.).   2. Электростанции.   2.1. На основе двигателей (по п.1).

 

2.2. На основе магнитных электрогенераторов (МЭГ).

 

2.3. На основе виброрезонансных электрогенераторов.   2.4. На основе кавитационных электрогенераторов.   2.5.

 

Другие.     3. Теплогенераторы.   3.1. На основе источников электроэнергии (по п.2).   3.2. Кавитационные теплогенераторы.   3.3. С горелочными устройствами.

 

3.4.

 

Модернизированные котельные.   3.5. Другие.   4. Персональные электрические бестопливные машины (ЭБМ).   4.1. Комнатные.   4.2. Квартирные.   4.3. Коттеджные.   4.4. Крупных жилых домов (домовые).   4.5.

 

Специальные.   II. Транспорт   1.

 

Автомобильный.   1.1. Легковые автомобили.

 

1.2. Грузовые автомобили.   1.3. Большегрузные автомобили.   2.

 

Железнодорожный.   2.1. Тепловозы с двигателями внутреннего сгорания.   2.2. Электровозы с автономными электроисточниками.

 

3.

 

Воздушный.

 

3.1.

 

Самолеты.   3.2.

 

Вертолеты.   3.3. Аппараты с вихревыми движителями.   4. Водный.   4.1. Корабли и суда с воздушными бестопливными энергоустановками.   4.2. Корабли и суда с водяными бестопливными энергоустановками.

 

5. Амфибии и бездорожники на основе вихревых движителей.     Краткие комментарии к (далеко не полному) перечню направлений естественной энергетики.

 

Конечно, во всех направлениях основным является отсутствие потребления органического или ядерного топлива. Энергию предпочтительно получать из наиболее распространенных и доступных веществ — воздуха и воды, а также — непосредственно из окружающего пространства, а точнее путем использования потенциальной энергии электринного газа (эфира) и гравитационных сил.   Пока можно с уверенностью говорить об энергоустановках на основе частичного распада веществ на элементарные частицы, так как эти процессы уже освоены  в промышленных установках, какими являются, например, автомобильные двигатели, работающие на воздухе как горючем, а также — вихревые кавитационные теплогенераторы, работающие на воде и выдающие избыточную тепловую энергию.   Энергоустановки, работающие на свободной энергии (окружающего пространства), — это пока экзотика, в том смысле, что даже те, которые реально работают (установки Серла, Флойда; вечные лампочки Кушелева и другие) — не прошли всесторонней проверки, в первую очередь, экологических свойств, в результате не только научных исследований, но и, в основном, в результате многолетней эксплуатации как автомобили и теплогенераторы. К примеру, двигатели и электрогенераторы Серла известны уже, как реально работающие, более полувека, но к использованию непригодны по вредным воздействиям на человека и окружающую среду.   Большинство направлений специальных пояснений не требуют.

 

Но некоторые моменты следует подчеркнуть. Так, горелочные устройства, работающие в автотермическом режиме могут быть использованы для модернизации существующих котельных установок без серьезных изменений их конструкции, что очень важно для их быстрого освоения: не нужно строить новые котельные, или изготавливать новые теплогенераторы.   В то же время существенно сдвинется с места децентрализация энергоустановок в сторону перечисленных персональных. Появление и распространение персональных энергоустановок имеет своим аналогом персональные вычислительные машины.   Воздушный и водный транспорт получат возможность почти безграничной автономности плавания, беспосадочных перелетов, дальности действия.   До появления транспорта, движение которых опирается на вихри эфира не так уж далеко, так как их аналогом являются те же, упомянутые двигатели (диски) Серла, реально летающие; быстровращающиеся объекты, например, гироскопы, теряющие свой вес и приобретающие положительную плавучесть, и другие, в том числе, вероятно, НЛО.  15. Социальные аспекты энергетики   В мире большое количество отдельных ученых, инженеров, специалистов различных отраслей, изобретателей, практиков, мелких и крупных предприятий и организаций локально решают тактические задачи совершенствования и развития энергетики.   Однако, отсутствие внятной теории и кризис классической физики до сего времени не позволили добиться успеха в этом деле. Медленно, но неуклонно и все быстрее ощущается приближение энергетического кризиса, в основе которого лежит топливная проблема Земли.

 

Топливная проблема Земли заключается в исчерпаемости запасов органического и ядерного топлива, а также — в отрицательном воздействии традиционной энергетики на природу и людей, вплоть до возможности исчезновения цивилизации.  15.1.

 

Социальные последствия  традиционной энергетики   1. Энергетический голод вследствие исчерпания запасов топлива.   2. Природные катастрофы в связи с потеплением климата.   3. Атомные аварии с радиоактивным заражением местности.   4. Загрязнение атмосферы, изменение ее газового состава.   5. Электромагнитные и радиоизлучения, убивающие живую и неживую природу.   6. Возможность исчезновения цивилизации.   7. Централизованная энергетика уязвима для террористов и техногенных катастроф.   В отличие от специалистов, совершенствующих частные вопросы традиционной науки или усиливающих ее математизацию, нами на основе самых современных представлений науки, в частности, гиперчастотной физики разработаны теоретические основы естественной энергетики, в которой используются природные процессы энергообмена без расходования органического и ядерного топлива в его обычном понимании. Успешно проведены широкомасштабные натурные опытно-конструкторские работы, в частности, на автомобильных двигателях, подтвердившие экологическую и экономическую эффективность новых энергетических технологий на базе естественной энергетики.  15.2. Социальные перспективы  естественной энергетики  1. Исключение негативных последствий традиционной энергетики.  2. Сохранение естественных природных условий.  3.

 

Заселение Севера и Антарктиды в связи с возможностью получения тепла и энергии на месте.

 

4. Развитие новых видов транспорта.  5. Появление новых видов информационной связи.  6.

 

Излечение болезней энергетическими методами.

 

7.

 

Трансмутация химических элементов, искусственное создание необходимых веществ.  8. Искусственная пища, жилище, одежда…  9. Сокращение и исключение войн.

 

10.

 

Приближение новой культурной цивилизации.  11. Децентрализация энергетики и, в связи с этим, ее неуязвимость для террористов и катастроф.

 

Итак, с учетом современного состояния общества и энергетики на основе новых экологически и экономически эффективных технологий использования естественных энергетических процессов природы, развертывания интенсивного промышленного освоения и производства установок естественной энергетики, объединенными, в том числе, международными, усилиями всего общества в течение ближайших 20-30 лет необходимо и возможно практически решить топливную проблему Земли.

 

То есть, главной целью деятельности в области энергетики является решение топливной проблемы Земли.    16. Описание изобретений  16.1. Способ подготовки топливно-воздушной   смеси и устройство для его осуществления    Заявка 2002124485 от 06.09.2002 F 02 M 27/00  (Получен патент РФ №2229619)   Изобретение относится к энергетике, теплосиловым установкам и двигателям, в том числе, внутреннего сгорания.   Известно явление холодной плазмохимии, при которой с атомов кислорода, азота, аргона и других газов слетают верхние электронные оболочки, образуются ионы и другие активные частицы, с выделением теплоты за счет частичного ядерного распада атомов. Условия для протекания плазмохимии могут быть созданы, например, за счет электрических разрядов или использования магнитного поля (Журнал «Промышленный вестник», № 9, 1999, стр.19).   Известно устройство для обработки воздуха в двигателе внутреннего сгорания (ДВС), предназначенное для озонирования воздуха перед его смешением с топливом, повышения полноты сгорания топлива и снижения токсичности отработанных газов двигателя. Озонирование воздуха достигается движением воздуха навстречу электронному ветру, образующемуся при коронном разряде между двумя электродами (Авторское свидетельство СССР № 1341366, F 02 M 27/00, Бюлл. № 3 от 30.09.87). Недостатком является сложность конструктивного исполнения устройства и необходимость наличия достаточно мощного генератора электрического тока.   Известно, что при слабом воздействии на воздух электрическим или магнитным импульсами, происходит только диссоциация молекул кислорода. При этом диссоциации молекул азота не происходит, так как энергия диссоциации молекул азота в 2 раза выше, чем у кислорода (Авторское свидетельство СССР № 1825887, F 02 M 27/04, Бюлл. № 25 от 07.07.93).   Известен способ предварительной подготовки топлива и устройство для его осуществления, включающий первичное воздействие на топливо катализатором на основе олова и последующую обработку топлива магнитным полем с воздействием на гранулированный наполнитель (катализатор) (Патент РФ № 2028491, F 02 M 27/00, Бюлл. № 4 от 9.02.95). Однако, указанной обработке подвергается только топливо, составляющее 3-5% от объема всей топливно-воздушной смеси и не обрабатывается воздух смеси. Более того, установка устройства по обработке топлива на топливном тракте сопровождается повышением гидравлического сопротивления в нем и повышением коррозии топливного тракта за счет более высокой химической активности топлива.   Известен способ магнитной обработки топливно-воздушной смеси в ДВС на основе постоянных магнитов и устройство, включающее в себя диффузоры, выполненные из постоянных магнитов и образующие магнито-силовые линии, перпендикулярные потоку топливно-воздушной смеси (Авторское свидетельство СССР № 1384814, F 02 M 27/00, Бюлл. № 12 от 30.03.88). Однако, использование только магнитной обработки недостаточно для эффективного повышения химической активности топливно-воздушной смеси, а также указанная обработка топлива сопровождается повышением гидравлического сопротивления в топливном тракте перед подачей в камеру сгорания (цилиндры двигателя).

 

Технический результат, который может быть получен при осуществлении изобретения на основе предлагаемого способа подготовки топливно-воздушной смеси заключается в повышении КПД теплосиловых установок и двигателей, снижении концентрации вредных примесей в отработанных газах и снижении гидравлического сопротивления в топливно-воздушном тракте.   Для достижения данного технического результата, в предлагаемом способе подготовки топливно-воздушной смеси, заключающимся в обработке компонентов топливно-воздушной смеси магнитным полем, предварительно обрабатывают только воздух путем воздействия на него магнитного поля и катализатора, при этом создают такую индукцию магнитного поля, при которой в присутствии катализатора происходит диссоциация на ионы не только молекул кислорода воздуха, но и молекул азота, затем обработанный воздух смешивают с горючим в пропорции, обеспечивающей получение предельно бедной топливно-воздушной смеси, образовавшуюся топливно-воздушную смесь подают для сгорания в теплосиловую установку или двигатель.   Введение в предлагаемый способ подготовки топливно-воздушной смеси предварительной обработки воздуха на основе комбинированного воздействия на него магнитного поля и катализатора, приводящего к диссоциации на ионы не только молекул кислорода воздуха, но и молекул азота, а также последующее смешивание обработанного воздуха с горючим в пропорции, обеспечивающей получение предельно бедной топливно-воздушной смеси, позволяет получить новое свойство, заключающееся в повышении химической активности воздуха за счет диссоциации молекул не только кислорода, но и азота, составляющих до 80% воздуха, сокращении расхода горючего за счет применения предельно бедной топливно-воздушной смеси, а также сокращении концентрации вредных веществ в отработанных газах за счет более качественного сгорания топлива и снижении гидравлических потерь в топливно-воздушном тракте за счет предварительной обработки только воздуха, без присутствия топлива.   Предлагаемый способ подготовки топливно-воздушной смеси может быть осуществлен в описываемом ниже устройстве.   Устройство подготовки топливно-воздушной смеси, включающее в себя постоянные магниты, образующие магнитные силовые линии, перпендикулярные потоку воздуха, выполнено в виде плоского цилиндра, имеющего несквозное центральное отверстие, по внешней боковой поверхности цилиндра сделана выемка, соединенная с центральным несквозным отверстием каналами, при этом на внешней стороне выемки напротив друг друга установлены кольцевые постоянные магниты таким образом, что между ними образуется зазор, позволяющий проходить воздуху между магнитами во внутреннюю полость выемки и, далее, через каналы в центральное несквозное отверстие, причем внутренняя полость выемки заполнена катализатором, а к центральному несквозному отверстию подсоединен трубопровод для смешивания обработанного воздуха с горючим и подачи топливно-воздушной смеси в двигатель или теплосиловую установку.   На фиг.

 

1 изображено устройство подготовки топливно-воздушной смеси, реализующее предлагаемый способ.   Устройство подготовки топливно-воздушной смеси, выполнено в виде плоского цилиндра 1, имеющего несквозное центральное отверстие 2, по внешней боковой поверхности цилиндра 1 сделана выемка 3, соединенная с центральным несквозным отверстием каналами 4, при этом на внешней стороне выемки напротив друг друга установлены кольцевые постоянные магниты 5, между ними образуется зазор 6, позволяющий проходить воздуху между магнитами 5 во внутреннюю полость выемки 3 и, далее, через каналы 4 в центральное несквозное отверстие 2, причем внутренняя полость выемки 3 заполнена катализатором 7. К центральному несквозному отверстию 2 подсоединен трубопровод 8, в который подается горючее, например, через форсунку 10, для образования топливно-воздушной смеси. Трубопровод 8 соединяет устройство подготовки топливно-воздушной смеси с двигателем или теплосиловой установкой (на рис. не показаны). Магнитные силовые линии указаны в виде стрелок 9.

(Visited 1 times, 1 visits today)
Do NOT follow this link or you will be banned from the site! Пролистать наверх